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Abstract. In this paper the problem of minimizing the hot rolling time of a steel
strip is approached. A solution method based on genetic algorithm (GA) is
proposed. The proposed algorithm uses SBX crossover, uniform mutation and
initial population with feasible and infeasible individuals. To validate the
approach a six-stand rolling mill is modeled as an optimization constrained
problem and a set of problem instances were built using industrial data. The
global rolling time obtained with the proposed GA is 0.051% better than the
industrial time and obtains the best solution only in 23.62 CPU seconds. A
relevant feature of this proposal is that the rolling schedule generated with the
GA diminishes the equipment damage risks because it produces softer
reductions than the rolling schedule proposed by the manufacturer. Currently
we are developing new solution methods using different metaheuristics.

1. Introduction

Steel hot rolling is one of the most important metalworking processes in comparison
with any other deformation process, aimed to manufacture products of relatively large
dimensions (sheets, strips, plates, foils, etc.), at high speeds [1]. A rolling mill reduces
the thickness steel slab in cages with pairs of work and support rolls as we can see in
Fig. 1. Due to high operational costs of a rolling mill is not acceptable to setup the
rolling schedule in an empirical way.

The hot rolling scheduling problem consist in determining the reductions for every
rolling pass to obtain the final thickness, such that the rolling power should be lower
than the nominal motor power. The hot rolling process has been approached in several
research works, where different heuristics were applied. Some approaches consist in
optimizing the rolling schedule to get strips of good quality, others in reducing the
damage on the rollers and there are jobs where productivity of the system is
maximized. In this work a Genetic Algorithm is applied to get a hot rolling schedule,
for a six stands rolling mill. The GA was tested using industrial data.
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Fig. 1. Hot rolling process

2. Related Work

taheuristic algorithms to the hot rolling process has been the

The application of me! R
mnstrong [2] proposed the optimization

subject of several research works. Nolle & A : . :
a 7-stand hot rolling mill using simulated

of the surface quality of a steel slab in
annealing (SA) and genetic algorithms (GA). In this work the SA shows a better
ari propose a general methodology to solve

performance than GA. Oduguwa & Tiw: . : .
problems of sequential processes using GA [3]. The propos?l consists in a l?lnary
representation of the full set of parameters as a sub-set of strings. An application to

multi-pass hot rolling was given, using a multi-objective model. The goal was to
maximize the system productivity, optimizing the roll force.

Chakraborti [4] applied GA to the problem of minimizing hot rolling time in a
reversing mill stand, determining the optimum number of odd passes. In this work the
efficiency of GA to calculate a hot rolling schedule, with respect to traditional
methods, was demonstrated. Another contribution of Chakraborti [5] was the study of
surface profiles of slab rolled. In this case, two objective functions were applied to
evaluate the wearing and deflection rolls as the main factors of the variation of the
thickness during rolling process. The GA produces good quality solutions with
respect to the solutions corresponding to the industrial data [6]. Another approaches to
determine hot rolling schedules have been applied as neural networks [7, 8], fuzzy
logic [9, 10], and finite element methods [11, 12]. Currently one of the most
successfully approaches to solve the hot rolling scheduling problem is the genetic
algorithm.

Heméndez apply a procedure to calculate the optimal pass reductions in two phases
[13]. In the first one a non linear optimization function was applied to evaluate the
computational cost of the problem solution. Then a GA was applied to compare two
point and simulated binary crossover operators.

Unlike the traditional approaches in this work the steel chemical composition of
the strip is incorporated, as a problem parameter. This will allow the automatically
setup of the hot mill for different steels. A solution method based on genetic
algorithm is proposed, which uses SBX crossover, uniform mutation and initial

population with feasible and infeasible individuals.
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3. Problem Description

3.1. Instance Description

Industrial data was obtained from the Hylsa Monterrey Company and from the
software HSMM of INTEG Process Group [13]. Table 1 shows the different chemical
compositions of the steels considered in this work. The first column contains the steel
identifier. From column two to six are contained the weight percent of carbon,
manganese, silicon, niobium, titanium and vanadium.

From the industrial data 17 instances were defined, which can be consulted in [14].
Each instance defines the parameters of a different rolling problem. A rolling problem
consists in determining the intermediate reductions needed to roll the slab steel and to
obtain the final thickness in a 6-stand roll mill. Table 2 shows the parameters included
in an instance: the data source, the number rolling stands (1), the instance name, the
initial thickness (/,), the final thickness (/1), initial width (w), chemical composition
(%C, %Mn, %Si, %Mo, %Nb, %Ti, %V), and for each rolling stand the roll diameter
(D)), the roll speed (v;), the temperature (T5), the grain size (dp;), the motor power (P;)
and the inter-stand distance (/;) are indicated.

Table 1. Chemical composition of steel

Steels 1d. %C  %Mn % Si % Nb % Ti %V
1 0.0450 0.450 0.069 0.0056 0.002  0.080
2 0.0380 0.300 0.009 0.0050 0.002  0.002
3 0.0820 0.480 0.045 0.0360 0.002  0.002
4 0.0710 0.758 0.014 0.0230 0.013  0.003
5 0.0028 0.170 0.009 0.0350 0.035  0.005
6 0.0530 0.784 0.010 0.0260 0.000  0.000

Table 2. Hot rolling scheduling problem instance

Industrial Data: Hylsa n=6 Name: hyl001.txt
hy =48 mm he=3.8 mm w=991mm
%C = 0.053, %Mn = 0.784, %Si = 0.017, %Mo = 0, %Ti=0, %Nb =0, %V =0
Roll pass 1 2 3 4 5 6
D; (mm) 752 764 758 492 456 474
v;(m/s) 0.81 1.43 221 3.38 457 5.54
T; (°C) 1010  987.64  964.25 9427  927.32 908.27
doi (um) 400 100 80 60 40 20
P; (kW) 7000 7000 7000 7000 7000 7000

I{(m) 3.5 35 35 3.5 35
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3.2 Optimization Problem Formulation

Given an instance of the hot rolling scheduling problem, the goal is to determine the
intermediate thicknesses /1y,..., /i, to minimize the total rolling time given by:

n
t=>1 a
i=1
The process time in cach stand is accumulated, to calculate the total rolling time.
The rolling time in each stand is calculated adding the contact time between the roll
and the stecl, and the time elapsed for the slab from one stand to another. The rolling
time in a given stand / can be calculated as follows:

AR - R; +1;
— )

Vi

;=

where:
R;: roll radius in stand i.
J; : inter-stand distance
v; : roll speed in stand i.

Ahi: hig-hi
The problem includes the following two constraints:
1. In every rolling stand a reduction is applied until the final thickness is

obtained. Each intermediate thickness should be lower than the previous one:

ho> hy > Iy >hy > hy> hs > he 3)
2. To get the reduction in a rolling stand, a rolling power should be applied
which be lower than the motor power:

W, < P; fori=1...6 “4)

To calculate the rolling power W; is required to calculate the flow stress. In this
work we use the Herndndez model to predict the flow stress of any kind of steel,
independently of the chemical composition [15-18]. The flow stress parameters
include the temperature, the strain, strain rate, grain size and the chemical

composition of the rolling steel.

=0 (T, &, & dy, %C, %Mn, %Si, %Mo, %V, %Ti, %Nb) )

In hot rolling, is better to calculate the deformation in terms of the bite angle &, so
that we can calculate the resistance to deformation [19, 20] as follows:

= 1
k=—1| oda, 6)
i a f aQ; .

Then the rolling forces to deform the steel can be calculated. The roll-separating
fqrce F can be calculated using different mathematical models, like rolling theories of
Sims [21], Cook & McCrum [22] and Alexander & Ford [23], in this work is used the
Alexander & Ford model
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4. Genetic Algorithm Proposal

In this section the genetic algorithm proposed to solve the hot rolling scheduling
problem is described. The GA determines the intermediate reductions required to
obtain the final steel thickness in order to minimize the total rolling time. The GA

uses SBX crossover [24], uniform mutation [25] and elitism. The initial population
includes feasible and infeasible individuals.

4.1. Individual Representation Structure

Each individual is represented as a thicknesses vector X = [hq, Ay, h,, hs, hy, hs, by,
where hg and Ay are the initial and final thicknesses of the strip and 4y, h,,..., h; are the
intermediate ones. All the individuals have the same initial and final thicknesses.

4.2. Initial Population

To create the initial population an empirical expression for the maximum reduction is
applied [26]. The maximum reduction to apply in each pass is given by (7), where n is

the number of rolling passes in a mill train, Ay is the entry thickness and hy is the final
thickness;

7
7, ™

For each individual in the population the intermediate thicknesses (hy, h;...h;) are
determined, 4; it must be randomly generated in the interval ((1-P)h-1, h-1).
Infeasible individuals don’t satisfy the constraints given by (3) and (4). As we can see

in this process feasible and infeasible individuals can be created. When a new
individual is created its feasibility or unfeasibility is determined and saved.

4.3. Fitness Evaluation

The objective function of the problem is used, to calculate the fitness of each
individual

4.4. Parents Selection

Two different criteria are applied to select the parents for crossover. When the
population includes feasible and infeasible individuals, one feasible individual and
one infeasible are uniform randomly selected. Otherwise if the population only
includes feasible individuals we uniform randomly select one parent among the best
individuals and one among the worst individuals.



74 Herndndez C., Fraire H., Espriella K., Castilla G. and Mancilla J.

4.5. Crossover Operator

Simulated Binary Crossover (SBX) is a crossover technique designed for recal
e the parents Py and P> are randomly selected, the crossover

representations [24]. Onc
operator produces the 0, and O, offsprings. The SBX process consists in:

Step 1. Generate a uniformly distributed random number « €[0, 1]
Step 2. Calculate the parameter B

1
(zu)ﬁ ifu<0.5
P2 1 ym .
H__) otherwise
—-u

Step 3. The offsprings are determined using the following vector crossover

operation:

01 = 05((R + P) - Py = P)]

2 =0S[(R + P+ AP = R)]

d the other is infeasible, both offspringss are
dependently of the feasibility of the offsprings.
Otherwise, when both parents are feasible, only feasible offsprings are considered. As
we can see the genetic algorithm has two phases. In the first one the population
contains feasible and infeasible individuals and in the second one includes only
feasible individuals. The crossover operator is applied to a percentage of the
population using an elitism criterion in the parent’s substitution.

Whenever a parent is feasible an
considered to substitute the parents, in

4,6. Mutation

In this process an individual of the population is uniform randomly selected and
modified to produce a mutated individual, which is considered to substitute the
original individual. Uniform mutation was applied [23]. An intermediate thickness k;
is uniform randomly selected, and a uniform random value in (s1-1, s+1) is assigned
to ;. In the first phase, the mutation is applied to increase the population diversity. A
mutated individual is considered to substitute the original individual, independently of
its feasibility. In the second one only feasible mutated individual are considered.

A percentage of the population is mutated applying an elitism criterion in the original

individual substitution.

4.7. Generations

A new generation is created applying crossover and mutation to the population of the
current generation. The genetic algorithm stopping criterion is defined by a certain
number of generations.
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5. Experimental Results

The experiments were carried out with Microsoft Windows Server 2003 for Small
Business, dual Xeon CPU 3.06 GHZ, 3.87 GB RAM, and the compiler C++.
Industrial data were obtained from the Hylsa Monterrey Company and from the
software HSMM of INTEG Process Group [13]. With this information 17 problem
instances were defined, which can be consulted in [14]. Every instance is a different
rolling problem where the intermediate reductions need to be found to roll the steel to
obtain the final thickness in a 6-stand roll mill. The 17 instances considered were
solved 30 times to obtain the average results. Preliminary tests were realized to obtain
the best crossover and mutation values. The evaluated genetic algorithms were
configured using a probability crossover of 40% and 50% of probability mutation, a
population of 100 individuals and 100 generations. Four genetic algorithms evaluated
were developed using different types of generating initial population strategy,
crossover and mutation. Table 3 shows the algorithm configuration for each genetic
algorithm evaluated.

Table 4 shows the accumulated average results for the 17 instances used. The first
column contains the algorithm identifier. The column two shows the accumulated of
the average execution time required for solving each instance. The third column
contains the accumulated of the average execution time, required for the GA to get the
best solution. The fourth column contains the average of the improvement percentage
in the rolling time respect to the industrial time. As we can see the GA4 algorithm
shows the best performance.

Table 5 contains the rolling schedule proposed by the manufacturer, and the rolling
schedule generated by the GA for the same instance. In both cases the exit thicknesses
and the rolling time in each stand are showed.

Table 3. Evaluated genetic algorithms configurations

Algorithm Id Initial Population Crossover Mutation

GA, Feasible individuals Two points  Limited

GA, Feasible individuals SBX Limited

GA; Feasible individuals SBX Uniform
Feasible and infeasible .

GAs individuals SBX Uniform

Table 4. Efficiency and quality solution global results

Total execution time Time to best solution Rolling time
(cpu. sec.) (cpu. sec.) (seconds)
Algorithm Average gta[.]d?rd Average Slar}dz.xrd % Error
eviation deviation
GA, 306.169 22913 233.680 21.4474 0.018%
GA, 307.384 19.2202 245.761 28.1648 0.022%
GA; 256.647 20.1310 240.673 20.816 0.045%

GA, 42.625 4.9605 23.622 5.2910 0.051%
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Figure 2 shows the typical differences observed between the rolling schedules
propc;scd by the manufacturer and the genetic rolling schedules gencrated by the

algorithm. The last one was graphed using the averages of the rolling time and of the
thickness reductions in each one of the six stands for the 17 industrial instances used

in this work.
Table 5. Rolling schedules for a 6-stand roll mill

Manufacturer proposed GA generated
Exit thickness  Rolling time  Exit thickness  Rolling time
Roll pass (mm) (sec) (mm) ( sec)
hy 48 hy 48
1 h 26 4.433 h;  36.67 4.401
2 hy 143 2.494 h, 2252 2.498
3 hy 931 1.603 h; 1357 1.610
4 h, 6.03 1.043 hy 823 1.046
5 hs 4.55 0.769 hs  5.80 0.771
6 h 38 0.0024 hy 38 0.0039
Total time : 10.3470 _ Total time: 10.3317
——o— industrial time ---e---GA time
~ soft
1805 hard change
E 160 T change
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Fig. 2. Comparison of rolling schedule obtained with the GA4 vs. the industrial schedule

The rolling time obtained with this algorithm was 0.051% better than the industrial
time (Table 4). The execution average time required by the algorithm to solve an
instance is 42 CPU seconds and 23 CPU seconds to obtain the best solution.
Additionally the rolling schedule generated with GA4 produces softer reductions than
the rolling schedule proposed by the manufacturer (Figure 2). This characteristic of
the solutions generated with GA4 diminishes the equipment damage risks.
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6. Conclusions

In this work the problem of minimizing the hot rolling time was approached. Unlike
the traditional approaches, the steel chemical composition is incorporated as a
problem parameter allowing the automatically setup of the hot mill for different
steels. To validate the approach a six-stand rolling mill is modeled as an optimization
constrained problem and an approach genetic algorithms based is proposed to solve
the problem. Four different genetic algorithms were evaluated using realistic data of
industrial schedules. The genetic algorithm configured with feasible and infeasible
individuals in the initial population, SBX crossover and uniform mutation shows the
best performance. The global rolling time obtained with this genetic algorithm was
0.051% better than the global industrial time and the average execution time required
by the algorithm to obtain the best solution is 23.62 cpu seconds. Additionally the
rolling schedule generated with the genetic algorithm diminishes the equipment
damage risks because it produces softer reductions than the rolling schedule proposed
by the manufacturer.

Currently we are developing new solution methods using different metaheuristics.
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